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Applications of modern language models (LMs)
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Mathematically understanding LMs
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Methodology: controlled synthetic settings

* |[dentify structural assumptions in real data => simple synthetic setting
* Theory and controlled experiments

semantics
(meaning)

semantics (meaning)

syntax (grammar)

real data synthetic data



Methodology: examples of insights

structures in
real language

synthetic data
distribution

/ \

prove how models prove limitations in model expressivity,

learn structure in data optimization, interpretability, ...
? more structures ? how to address

& how they interact such limitation



Outline of this talk

e Part 1: Towards mechanistic understanding of feature learning in Transformers
e Understanding the training dynamics is crucial
* How 1-layer Transformers learn simple structure (topic modeling)
e Challenges with more complicated model or data (PCFG)
e Large family of interpretability methods can be misleading

e Part 2: Improving training and sampling strategies for generative LMs
e Sample efficiency of MLM losses <= mixing times of Markov Chains
* Directions towards designing better losses and architectures
synthetic data

distribution
\ /

Theory Experiments




How Do Transformers Learn Topic Structure:
Towards a Mechanistic Understanding
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Characterizing the optimization process is crucial

Many prior theories:
representational theoretical

Their claims: There exist parameters
s.t. a Transformer implements some
known function

Question: What function will the
training dynamics converge to?

non-convex optimization landscape

8
Image from: https://science.hkust.edu.hk/research/geometric-landscape-analysis-some-non-convex-optimizations



Model architecture: single-layer transtormer

e Given (one-hot) input representation Z € R*V

f@2) =W De((WF2)T(WO2))

* d:embedding dimension
 N:sequence length

c WK, WQ WV € R*? attention key, query, value matrices

* g: softmax (each column sums up to 1)
* Input X € RY*N output o(X) € RV

c0(X); = v

e U

N X
Lk=1€

kj



Two-stage optimization process

* Stage 1 (steps 0-400) ) s
* [IWElp [IWC]lp ~ 0 6 |
 ||WV||F increases significantly

* Stage 2 (steps 400-1000)

o ||[WX||E, [IWQ]|F start increasing significantly :
 |[|WV]|r stays relatively flat

; 200 4go 600 800 1k
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Two-stage optimization process

e nit: WK =0, W0 WV=x0

e During early training, WV learns much faster than WX and W¢

* V., k contains the term W¢
« Init: W2 =0
* S0V, k= 0
* Does not apply to WY
* Vv contains Attn(Z)
e Attn(Z)isnot=0
e each columnsumsuptol
* SoVy,visnot=0

Recall

Trainable parameters: WX, W@, WV
f(Z2) = WV2Z) Attn(2)

Attn(Z) = 0((WKZ)T(WQZ))

o: softmax (each column sums up to 1)




Training loss: masked language modeling

e Original: Andrew[Carnegie]famoust said, "My heart is in the work.”
 Masked: Andrew [Carnegie/famously [MASK], "My heart is apple the [MASK].”
* Predicted: Andrewfamously ?, "My heartis ? the ?.”

/Carnegie 0.05\

label y =iCarnegieJ
Webber 0.09
Ng 0.11 !
prediction § = Jackson 0.08 > loss at that position [(9, )
Johnson  0.08 l
training loss ), [(¥, y) for all selected positions

. / .



Data: topic model

* “Topic” is a simple aspect of semantics in natural language?

* document = mixture of topics (bag of words, i.e. no word order)
 topic = probability distribution of words

- N - N - N
ski 2% 3% 0
trail 4% 6%
ice 1% 1%
sun 2% = 0.7 1% + 0.2
stars 1% 0.1%
transformer 0 D 0

I DoC
—

1. David Blei, et al, 2003, Latent Dirichlet Allocation (LDA) 2. Figure idea credit to Sanjeev Arora’s talk in 2014



Stage 1 optima

Thm 1 (Stage 1: WX = W9 = 0, i.e. uniform attention).
With one-hot embedding, the optimal WV is block-wise

. WVij is larger when tokens i and j belong to the same topic

. WVij is smaller when tokens i and j belong to the different topics

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding (ICML 2023) 15



Stage 2 optima

Thm 1 (Stage 1: WX = W? = 0, i.e. uniform attention).
With one-hot embedding, the optimal WV is block-wise

. WVi]- s larger when tokens i and j belong to the same topic

. WVi]- is smaller when tokens i and j belong to the different topics

Thm 2 (Stage 2: Fixing WY at Stage 1 optima).
Optimal attention scores A := 0((WKZ)T(WQZ)) learns topic structure:

* Ajj is larger when tokens i and j belong to the same topic

* Ajj is smaller when tokens i and j belong to the different topics

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding (ICML 2023) 16



Experiments on Wikipedia! dataset

* Real data
* Not a “bag of words”
* Different topics allowed to overlap

* Theoretical predictions still qualitatively hold
e Same-topic tokens on average:
* Larger attention scores
* More similar embeddings

1. Wikimedia Foundation. URL https://dumps.wikimedia.org.
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Future work: end-to-end theory for Transformer training dynamics

|IWk||_F

1

e Recall: two-stage optimization process

o N B~ OO O O

* More end-to-end training dynamics?

0 200 4:100 600 800 1k

wEkZT(wez 1
Attn(Z) = 0<( ) { )> .
Vda i

* Training dynamics for attention?

. Step
0 200 400 600 800 1k

Ongoing work, with Zehao Dou, Mahdi Soltanolkotabi, and Andrej Risteski 18



Summary

[IWki|_F

* V,,kx contains the term we guides exploration
* it WP =0
*SoV,k=~ 0

i
¢ lwall_F

* V,,v contains Attn(Z)
e Attn(Z)isnot=0
*SoV,visnot=0

* Does not apply to WV

verify,
identify limitations,

Thm. Transformers capture .
generate hypothesis, ...

topic structures through
masked LM training

- WIKIPEDIA

Theory Experiments

arxiv.org/abs/2303.04245

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding (ICML 2023) 19



Outline of this talk

* Part 1: Towards mechanistic understanding of feature learning in Transformers
e Understanding the training dynamics is crucial
 How 1-layer Transformers learn simple structure (topic modeling)
e Challenges with more complicated model or data (PCFG)
e Large family of interpretability methods can be misleading

e Part 2: Improving training and sampling strategies for generative LMs
e Sample efficiency of MLM losses <= mixing times of Markov Chains
* Directions towards designing better losses and architectures

synthetic data
distribution

N A

Theory Experiments
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Transformers are uninterpretable with
myopic methods: a case study with
bounded Dyck grammars

Kaiyue Wen Yuchen Li Bingbin Liu Andrej Risteski
(Tsinghua University & Carnegie Mellon University)

arxiv.org/abs/2312.01429 (NeurlPS 2023)
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Interpreting Transformers

COM S @ N EEa ° . .
o attention map — syntactic trees

follow
social
media

transitions 3
Capi(t):l
Hill
. W .
this
Vtv,'! follow social media transitions on Capitol Hill
a -1
little
different .
-0 From “A Primer in BERTology” (Rogers et al. 20)
R R U S C
Pitfalls e Can be misleading?.

e Lack formal understanding.

22
1. Jain & Wallace, 2019; Serrano & Smith, 2019; Rogers et al,, 2020; Brunner et al., 2020; Prasanna et al., 2020; Meister et al., 2021, ...



Interpreting Transformers

Question: Can we reliably interpret the algorithm implemented
by a Transformer by looking at individual components?

“Individual” 1) attention patterns and 2) single weight components.
“myopic methods”

Answer: Transformers may not be interpretable by
inspecting individual parts.

r N
~—

Dyck grammar Experiments

A

Theory

23



Background: the Dyck language

Definition: the language of balanced parentheses

Task: predict the type and openness of the next bracket.

® Most naturally processed by maintaining a stack.!

Step 5:

Stack

str

[

[

invalid  [) (] [(])
([]

CIosinE bracket. Check top of stack is
same Kind or not

Question: how do Transformers process this Dyck language?

24



How do Transformers process Dyck?

Prior work [Ebrahimi et.al, Yao et.al]: Transformers learn Dyck

with highly stack-like attention patterns.

T

e Predict by focusing on the last unclosed bracket. r 010
stack-like attention [Yao et.al]

Our results: Transformers learn l!

s
(
(
(
( | ]
)
)
)
)

diverse attention patterns on Dyck.
|

=~ S
- e e o~ o~~~ N

e Both in theory and in practice.

SCCCerry sttt SCCC())))

e All models reach high accuracy.
our findings: diverse attentions

25



Outline of this talk

e Part 1: Towards mechanistic understanding of feature learning in Transformers
* Understanding the training dynamics is crucial
 How 1-layer Transformers learn simple structure (topic modeling)
e Challenges with more complicated model or data (PCFG)
* Large family of interpretability methods can be misleading

e Part 2: Improving training and sampling strategies for generative LMs
» Sample efficiency of MLM losses €<= mixing times of Markov Chains
* Directions towards designing better losses and architectures
synthetic data

distribution
\ /

Theory Experiments
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Promises and Pitfalls of
Generative Masked Language Modeling:
Theoretical Framework and Practical Guidelines

Yuchen Lil%4, Alexandre Kirchmeyer!, Aashay Mehtal, Yilong Qin?,

Boris Dadachev?, Kishore Papineni?, Sanjiv Kumar?, Andrej Risteski?
(1CMU 2Google)

arxiv.org/abs/2407.21046 (ICML 2024)
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he autoregressive language model paradigm

Learn an autoregressively parametrized distribution:

N
PH(XLXZ""'XN) — l_IPH(Xl | Xl:"'JXi—l)

=1
Issues: ‘

1. Lack of parallelism

N sequential steps to generate N tokens

2. Quality”
® (Can’taccess right-hand context

* Li and Risteski. (ACL 2021)
* Lin et al. (NAACL 2021)
* Bachmann and Nagarajan (arXiv 2024)

®* No natural way to revise earlier (left) predictions

28



Alternative: Generative Masked Language Models*

Non-autoregressive way to generate a sequence’:
® Start w/ pure noise (e.g. masks, random tokens)
®* |teratively refine current guess, s.t. one forward pass updates multiple

positions simultaneously.

Bidirectional context. Leverages “parallelism” of transformers for each step.

If # of steps is small, latency is low.

* Jacob Devlin et al. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

* Alex Wang and Kyunghyun Cho. 2019. BERT has a mouth, and it must speak: BERT as a Markov random field language model
* Marjan Ghazvininejad et al. 2019. Mask-predict: Parallel decoding of conditional masked language model

* Jacob Austin. 2021. Structured denoising diffusion models in discrete state-spaces

* Jiatao Gu and Xiang Kong. 2021. Fully non-autoregressive neural machine translation: Tricks of the trade.

* Kartik Goyal et al. 2022. Exposing the implicit energy networks behind masked language models via metropolis—hastings

* Nikolay Savinov et al. 2022. Step-unrolled denoising autoencoders for text generation

29



Example of the iterative refinement process

* translate from German to English: Im FulSball geht alles sehr schnell
* human label: Everything moves very fast in football.

* initial decoder hypothesis: <random> <random> <random> ...

* decode step 1: Everything football very fast in football.

e decode step 2: Everything is very fast in football.
e decode step 4: Everything is very fast in football.

e decode step 8: Everything is very fast in football.

30



Example of the iterative refinement process

* human label: Noble Peace Prize winner and former Head of the
International Atomic Energy Authority, Mohamed El-Baradei explained that the
constitutional draft belongs "on the rubbish tip of history."

* decode step 1: Nobel Peace Prize laureate and ex- of the International
Atomic Energy Agency Mohamed EIBaradei said the draft constitution belongson

the of rubbish of history".

* decode step 2: Nobel Peace Prize laureate and ex-head of the International
Atomic Energy Agency Mohamed El-Baradei said the draft constitution belongs
"on the mountain of rubb rub of history".

* decode step 4: Nobel Peace Prize laureate and ex-head of the International
Atomic Energy Agency Mohamed El-Baradei said the draft constitution belongs
"on the mountain of rubbish in history".

* decode step 8: Nobel Peace Prize laureate and ex-head of the International
Atomic Energy Agency Mohamed El-Baradei said the draft constitution belongs
"on the mountain of rubbish in history".



Generative Masked Language Models

Training: predict (random) set of tokens, given rest.
In other words, fit Pg(Xs | X5)

 Original: Andrew Carnegie famously said, "My heart is in the work.”
* Masked: Andrew Carnegie famously [MASK], "My heart is in the [MASK].”

Generation: use the learned conditionals Pg(Xs | X¢) as input for a
Gibbs sampler.

32



Generative Masked Language Models

Gibbs sampling:

/Repeat:

Let current sequence be x = (xq, X5, ..., X,)

Pick S € [n] uniformly at random.

Sample xS’ ~ Pg(Xs = x5’|x5—)

\\ Update sequence toy = (xg, x5)

33



This paper

Questions:

How well do we fit joint distribution by training to fit the conditionals?

Can we use theory to elucidate the design space of
losses, training and inference procedures?

Answers:

(1) A mathematical framework to analyze training sample efficiency &
inference efficiency of masked language models (MLMs).
(2) (Not in this talk) Empirical analysis of critical components & failure modes.*

* Li et al. Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines. ICML 2024. 2



Highlights

O "Dictionary” between
O sample complexity of MLM losses (“training efficiency”), and
O mixing times of Markov Chains (“generation efficiency”)

O Directions towards designing better losses and architectures

35



Part |: Dictionary b/w sample efficiency and
mixing time

Theorem 1 (informal): Sample efficiency of MLM losses can be characterized
via mixing time of Gibbs-like sampler.
(E.g., masking random subsets of size k during training

~ Gibbs sampler that randomizes k coordinates)

Training is sample-efficient when generation is efficient !

36



Part |: Dictionary b/w sample efficiency and
mixing time

Theorem 1 (informal): Sample efficiency of MLM losses can be characterized
via mixing time of Gibbs-like sampler.
(E.g., masking random subsets of size k during training

~ Gibbs sampler that randomizes k coordinates)

Theorem 2 (informal): Masking more is (statistically) better.

37



Part Il: Strong correlations harm sample and
inference efficiency

Theorem 3 (informal): Strong dependencies among target positions cause:
(1) Slow generation: slow mixing of Gibbs sampler (multimodal)
(2) Slow training: poor sample efficiency (via Theorem 1)
(3) A step of Gibbs can't be implemented by parallel decoding Transformers
(e.g. a forward pass of BERT)

Proof idea for (3): Each forward pass of parallel decoding

Transformers implements a conditional product distribution

38
* Jacob Devlin et al. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



Part Il: Strong correlations harm sample and
inference efficiency

Theorem 3 (informal): Strong dependencies among target positions cause:
(1) Slow generation: slow mixing of Gibbs sampler (multimodal)
(2) Slow training: poor sample efficiency (via Theorem 1)
(3) A step of Gibbs can't be implemented by parallel decoding Transformers
(e.g. a forward pass of BERT)

Remark 1: Simple toy model to explain “stutter” (common failure mode we observe):

“The dog was walking walking along the road”

Remark 2: Explains why these model work much better for machine translation

(generation is “less multimodal”, and target-side dependency is weaker) 39



Future work: ideas to improve losses + samplers

O "Dependent” version of Gibbs sampler where masks are adaptively
chosen. (Details in paper)
* Unclear how to measure “"dependence”

* Preliminary evidence cross-attention is better than self-attention

O Better architectures to implement Markov Chain update in parallel?

* Li et al. Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines.
ICML 2024. 40



Email: yuchenl4@cs.cmu.edu

Summary Web: cs.cmu.edu/~yuchenl4

e Part 1: Towards mechanistic understanding of feature learning in Transformers
e Understanding the training dynamics is crucial
* How 1-layer Transformers learn simple structure (topic modeling)
e Challenges with more complicated model or data (PCFG)
e Large family of interpretability methods can be misleading

e Part 2: Improving training and sampling strategies for generative LMs
e Sample efficiency of MLM losses <= mixing times of Markov Chains
* Directions towards designing better losses and architectures

Theory / synthetic data \ Experiments
\ distribution /

1. Yuchen Li, Yuanzhi Li, and Andrej Risteski. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding (ICML 2023)
2. Kaiyue Wen, et al. Transformers are uninterpretable with myopic methods: a case study with bounded Dyck grammars (NeurlPS 2023)
3. Yuchen Li et al. Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines (ICML 2024)
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